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Abstract

For the nonholonomic elasticÐplastic problem under a given external action history over a time interval\
an extremal formulation is given in terms of the complete solution over the whole interval[ The assumed
elasticÐplastic behaviour is of the associated type with piecewise linearized yield surface and linear hardening[

When the loading history is reduced to an in_nitesimal increment of the external actions "incremental
problem# or when the material behaviour is assumed to be of the holonomic type " _nite holonomic step#
problem\ the functional of the extremal formulation may be split into the sum of two other simpler functionals
"previously introduced# whose minimum\ for both of them\ gives the problem solution under less constraints
than in the original problem[

For general non!holonomic loading histories the above splitting is shown to be still possible when a
particular change of the complementarity condition of the constitutive law is considered\ which leads to a
new class of holonomic problems[

It is shown that some problems of this new class\ together with a suitable time discretization\ represent
the schematization of the original problem corresponding to well known numerical integration schemes[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

All the classical extremum principles of the theory of plasticity refer mainly to two formulations
of the actual elasticÐplastic initial:boundary value problem[ The _rst one is referred to as the
incremental problem\ aiming at the solution of a continuum problem for in_nitesimal increments
of the external actions[ The second one is generally referred to as a _nite holonomic problem
dealing with the elasticÐplastic response to _nite increments of the external actions under the path!
independence "holonomy# assumption for the constitutive law "deformation theory of plasticity#[

� Corresponding author[
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The solution of the elasticÐplastic initial:boundary value problem\ under a given history of
external actions\ requires following the evolution of the body response[ This occurs because the
constitutive elasticÐplastic law is intrinsically path!dependent or non!holonomic[ This response\ in
terms of displacements\ strains\ stresses and plastic multipliers\ must be evaluated in every point
of the body and for every time instant within an assigned time interval\ in which the external
actions are prescribed^ from a numerical point of view this requires correspondingly a space and
time discretization[

The time discretization is usually based on a preliminary sub!division of the external action
history into a sequence of loading conditions at prescribed time instants[ These are normally
chosen in such a way that the external action variation over each time interval is not far from
linear and such that\ inside the step\ the behaviour may be considered as path!independent "or
holonomic# with an expected good approximation[ Examples of time!integration strategies are]
the multistage method with piecewise linear yield functions "De Donato and Maier\ 0861 and
0862#\ the forward Euler scheme\ the generalized trapezoidal rule\ the generalized mid!point rule
and the backward!di}erence method "see e[g[ Ortiz and Popov\ 0874^ Simo and Taylor\ 0874^ Simo
et al[\ 0877#[

It is worth noting that a time integration scheme corresponds to a particular approximation of
the original non!holonomic material behaviour by means of a holonomic model[ In this way the
solution of the original problem is transformed into the solution of a sequence of holonomic
problems\ for each of which\ however\ the existence of the variational formulation is no longer
guaranteed so that the evaluation of some important properties "such as stability\ convergence
and accuracy of the solution# may be di.cult[

Therefore\ many attempts were made by di}erent authors "see e[g[ Maier\ 0858a^ Ponter and
Martin\ 0861^ Franchi and Genna\ 0873^ Martin\ 0878^ Borino et al[\ 0878# in order to give a
rational energetic base to the time integration methods[ Ponter and Martin "0861#\ proposed the
concept of minimum energy strain path\ equivalent to a constitutive model in which plastic strain
rates follow a linear path in strain space between two given strain points\ a path minimizing plastic
dissipation with respect to other paths joining the given strain points "Reddy et al[\ 0875#[ In this
way\ the backward di}erence method has been shown to possess variational consistency "Martin\
0878#[ Franchi and Genna "0873# were the _rst to identify the minimum principle whose solution
corresponded to the solution given by a numerical method "Initial Stress#[ A more general point
of view is introduced by Borino et al[ "0878#] in fact they suggest a consistent time discretization
procedure\ based on the maximum intrinsic dissipation theorem\ in order to transform the original
initial:boundary value problem into a set of boundary value problems "one for every step# of
holonomic plasticity[

In this context\ the present paper proposes and develops an a priori approximation of the
material behaviour envisaged in the original non!holonomic _nite step boundary value problem\
with the following advantages "with respect to the above approach where the material behaviour
of the approximate solution was dependent from the time integration scheme adopted#] "a# an a
priori direct control over the approximation of the material behaviour in the original non!holon!
omic problem^ "b# the existence of a variational formulation of the approximate problem as proved
in Section 3^ "c# the possibility\ by virtue of statement "b#\ to easily evaluate the stability\ the
convergence and the accuracy of the numerical solution procedure[

The above mentioned a priori direct control of the material behaviour is achieved using a
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particular change\ through a suitable weight function\ of the complementarity conditions of the
elasticÐplastic constitutive law[ Section 3 shows that the functional to be minimized for _nding the
solution can be split into the sum of simpler functionals\ the minima of which characterize the
approximate holonomic elasticÐplastic solution[ In particular\ the changes of the complementarity
condition of the constitutive law are shown which correspond to well known classical time
integration schemes of the original non!holonomic problem[

For the sake of simplicity\ the elasticÐplastic piecewise linearized constitutive laws "Maier\ 0869a^
De Donato\ 0863^ Hodge\ 0865# will be referred to[

1[ Finite!step problem formulation

Consider an elasticÐplastic solid which occupies a volume V with the smooth boundary
G � Gu k Gp\ Gu and Gp denoting the parts of the surface where displacements and surface tractions
are prescribed\ respectively[ A triaxial orthogonal Cartesian reference system xi "i � 0\ 1\ 2# is
adopted[ Volume forces F9

i ¦Fi"t# and prescribed strains u9
ij¦uij"t# in V\ prescribed displacements

wi"t# on Gu and surface forces p9
i ¦pi"t# on Gp\ are given for any instant 9 ¾ t ¾ T through known

time functions where F9
i \ u9

ij\ p9
i are the external actions at time t � 9 and Fi"t#\ uij"t#\ pi"t# are

known _nite increments of the external actions at time t[ Denoting with ui"t# and oij"t# the
displacement and strain _elds\ respectively\ let us assume the initial con_guration at time t � 9 as
reference con_guration\ therefore ui"t � 9# � 9\ u9

ij � 9 and oij"t � 9# � 9[ Moreover we denote the
stresses as s9

ij¦s¹ ij"t# and the plastic multipliers as l9
a¦l¹a"t# where s9

ij and l9
a are the "assumed

known# stresses and plastic multipliers at time t � 9\ respectively\ while s¹ ij"t# and l¹a"t# represent
the unknown _nite increments of stresses and plastic multipliers at time t\ respectively^ F9

i and p9
i

are assumed to be in equilibrium with the stresses s9
ij[

The incremental stress\ strain and displacement space!time functions s¹ ij"xk\ t#\ o¹ij"xk\ t# and
u¹i"xk\ t# are to be determined in the volume V and in the time interval DT � ð9\ T Ł[

The assumption is made of small displacements and of elasticÐplastic behaviour described by
piecewise linearized yield surface with associated ~ow rule and linear hardening "Maier\ 0869a^ De
Donato\ 0863^ Hodge\ 0865# "see Fig[ 0#[ Then\ denoting with ni the unit outward normal vector
to G\ the set of all the governing equations "equilibrium\ compatibility\ constitutive law# of the
problem\ denoted in the following as _nite!step problem DPÞ\ reads "the repeated indices summation
convention is adopted\ except for Greek indices#]

Problem DPÞ "1[0#Ð"1[00#

s¹ ij\ j¦Fi � 9 in V×DT "1[0#

s¹ ijnj � pi on Gp×DT "1[1#

o¹ij �
0
1
"u¹i\ j¦u¹ j\i# in V×DT "1[2#

u¹i � wi on Gu×DT "1[3#

s¹ ij � Dijhko¹
e
hk "or o¹e

ij � Cijhks¹ hk# "1[4#

o¹e
ij � o¹ij−o¹ p

ij−uij "1[5#
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Fig[ 0[ "a#Ð"b# The piecewise linearization of the yield surface with a "a � 0\ [ [ [ \m# planes being Naij the relevant outward
normal unit vectors and ra the distance of each plane from the origin at the virgin state[ "c#Ð"e# Some common hardening
yield surface evolutions depending on the choice of the yield plane interaction matrix Hab "Maier\ 0869a#[

f¹ a � fa"s¹ ij\ l¹a# � Naij"s¹ ij¦s9
ij#−s

b

Hab"l¹b¦l9
b#−ra

� Naijs¹ ij−s
b

Habl¹b¦f9
a "a\ b � 0\ [ [ [ \ m# "1[6#

oł
p
ij � s

a

1f¹ a

1s¹ ij

lła � s
a

Naijlła "1[7#

f¹ a ¾ 9 "1[8#

lła − 9 "1[09#

f¹ alła � 9 "1[00#

where a superimposed dot means derivative with respect to time t[
Equations "1[0#Ð"1[1# and "1[2#Ð"1[3# express the incremental equilibrium and compatibility\
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respectively[ Equation "1[4# de_nes the elastic part of the constitutive law\ Dijhk � C−0
ijhk being the

elastic moduli tensor[ Dijhk is assumed with the usual properties of symmetry and positive de_!
niteness[ Equation "1[5# states the additivity of the elastic o¹e

ij\ plastic o¹ p
ij and inelastic "prescribed#

uij strains[ Equation "1[6# de_nes the piecewise linearized yield surface in the stress space\ m being
the number of planes f¹ a � 9\ Naij the relevant outward normal unit vectors\ ra the distance of each
plane from the origin at the material virgin state[ Hab is the yield plane interaction matrix describing
the hardening law\ l¹a represents the plastic multipliers and f9

a � Naijs
9
ij−SbHabl

9
b−ra the value of

f¹ a at the initial time t � 9[ In the following Naij\ ra and Hab are assumed to be constant with respect
to the time variable t\ and\ besides\ Hab is assumed positive semide_nite[ Equation "1[7# expresses
the associated ~ow law "normality# while eqns "1[8#Ð"1[00# express the loadingÐunloading criterion
"Prager|s consistency rule#^ eqn "1[00# is often called complementarity rule[

Using the above piecewise linearization\ any yield surface can be easily approximated with the
requested degree of accuracy^ by a suitable choice of the Hab yield plane interaction matrix\ the
most common hardening yield surface evolutions can be represented "see e[g[ Maier\ 0869a^ De
Donato\ 0863^ Hodge\ 0865# "see Fig[ 0#[

In the following the time interval DT is always conceived as a time step within an assigned bigger
time interval T � ðT9\ TfŁ where the solution is sought[ The problem of determining the elasticÐ
plastic response in the whole interval T\ will be denoted as problem PÞ[ Throughout the paper we
will mainly consider the _nite!step problem DPÞ and its approximation[ Only in Sections 2[2 and 5
the elasticÐplastic problem PÞ\ in the whole time interval T\ will be considered[ For the sake of
simplicity\ the lower and upper limits of the time interval DT will be taken "as already assumed
above# as 9 and T\ respectively\ which it is always possible to lead back to with a suitable change
of time variable[

2[ Approximate time integration of the initial:boundary value problem

2[0[ Remarks on time discretization and problem reformulation

Usually the whole time interval T\ where the solution is sought\ is subdivided into a given
number of pre!de_ned subintervals in each of which\ whatever numerical integration algorithm is
used\ the step problem always amounts to a deformation theory or holonomic plasticity problem
"Borino et al[\ 0878#[

From the numerical point of view this suggests making an a priori approximation of the original
non!holonomic _nite!step problem DPÞ "eqns "1[0#Ð"1[00## by other ones of the holonomic type\
which will be simpler\ easier to handle "see Section 3# and able to allow for the time discretization
of the problem with a Ritz!type technique "see Section 4#[ Denoting with unbarred symbols the
variables relevant to the solution of these new _nite!step holonomic type problems\ their for!
mulation may be easily obtained by substituting the complementarity condition eqn "1[00# with
the following one]

fa"t# g
T

9

S"t\ t#l¾a"t# dt � 9 [t $ DT "2[0#
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where\ among all possible weight functions S"t\ t#\ only those satisfying the following relations are
considered]

−
1S"t\ t#

1t
0 R"t\ t# � R"t\ t# "2[1#

S"t\ t# − 9 [t\t $ DT^ g
T

9 g
T

9

S"t\ t# dt dt × 9 "2[2#

g
T

9 g
T

9

R"t\ t#v"t#v"t# dt dt − 9 [v"t# 0: 9 "2[3#

S"t\ T# 0 9 "2[4#

being v"t# any time function for which the integral of relation eqn "2[3# makes sense[
Then the set of the governing equations of the above _nite!step holonomic type problem

"Problem DP# becomes]

Problem DP "2[5#Ð"2[05#

sij\ j¦Fi � 9 in V×DT "2[5#

sijnj � pi on Gp×DT "2[6#

oij �
0
1
"ui\ j¦uj\i# in V×DT "2[7#

ui � wi on Gu×DT "2[8#

sij � Dijhko
e
hk "or oe

ij � Cijhkshk# "2[09#

oe
ij � oij−op

ij−uij "2[00#

fa � fa"sij\ la# � Naij"sij¦s9
ij#−s

b

Hab"lb¦l9
b#−ra

� Naijsij−s
b

Hablb¦f9
a "a\ b � 0\ [ [ [ \ m# "2[01#

o¾ p
ij � s

a

1fa

1sij

l¾a � s
a

Naijl¾a "2[02#

fa ¾ 9 "2[03#

l¾a − 9 "2[04#

fa"t# g
T

9

S"t\ t#l¾a"t# dt � 9 [t $ DT[ "2[05#

The choice of the weight function S"t\ t# and the relevant constraints "2[0#Ð"2[4# will be seen
"Sections 2[2\ 2[3 and 3# to play a fundamental role on the accuracy\ on the contractivity and on



A[ Pandol_\ A[ Carini : International Journal of Solids and Structures 25 "0888# 074Ð107 080

the extremal properties of the solution of the approximate problem DP and seem to strengthen the
interest for the kind of approximation here introduced[

2[1[ The choice of wei`ht function S] some examples

An in_nite number of functions exists which satisfy the conditions "2[1#Ð"2[4#[ Examples of such
functions below[

Example 0 ðsee Fig[ 1"a# and 1"b#Ł[

S0"t\ t# �
0
t $exp 0

t
T1−exp 0

tt

T11%[ "2[06#

The complementarity condition\ by integration by part\ becomes]

fa"t# g
T

9

exp 0
tt

T11 la"t# dt � 9[ "2[07#

Example 1 ðsee Fig[ 1"c# and 1"d#Ł[

S1"t\ t# � 00−
t

T1 exp 00−
t
T

−
t

T
¦

tt

T11[ "2[08#

For this example the complementarity condition reads]

fa"t# g
T

9 $0¦00−
t
T1 00−

t

T1% exp 00−
t
T

−
t

T
¦

tt

T11 la"t# dt � 9[ "2[19#

Example 2 ðsee Fig[ 1"e# and 1" f#Ł[

S2"t\ t# � b"t#g"t\ t# "2[10#

where

b"t# � exp 0−
T1

3t"T−t#1 "2[11#

g"t\ t# � g
T

t

exp 0
th

T11 b"h# dh[ "2[12#

In this case the complementarity condition becomes]

fa"t#b"t# g
T

9

exp 0
tt

T11 b"t#la"t# dt � 9[ "2[13#

It is worth noting that the substitution of the complementarity conditions eqn "1[00# with eqn
"2[0# is equivalent to the substitution of eqn "1[00# with]
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Fig[ 1[ On the choice of the weight function S"t\ t#[ Plot of the functions S0"t\ t#\ S1"t\ t#\ S2"t\ t# and their derivatives
R0"t\ t# � R0"t\ t#\ R1"t\ t# � R1"t\ t#\ R2"t\ t# � R2"t\ t# of examples 0 ðeqn "2[06#Ł\ 1 ðeqn "2[08#Ł and 2 ðeqn "2[10#Ł\
respectively[

fal¾
s
a � 9 "2[14#

where

l¾s
a � g

T

9

S"t\ t#l¾a"t# dt "2[15#
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represents a sort of weighted average of the function l¾a over the time interval ð9\ T Ł[ Taking into
account eqns "2[1# and "2[4# and integrating by part the right!hand side of eqn "2[15# we can write]

l¾s
a � g

T

9

R"t\ t#la"t# dt[ "2[16#

This shows the role of the symmetric function R"t\ t# � R"t\ t#[ The plots of the R"t\ t# functions
of Fig[ 1\ visualize the di}erent weights given to the values of la in the interval ð9\ T Ł ðin Fig[ 1"b#
larger weights are given to l for t : T while vanishing weights are given for t : 9^ in Fig[ 1"d#
larger weights are given for t : 9 and vanishing weights for t : T^ _nally in Fig[ 1" f# the larger
values are given around t � T:1Ł[

2[2[ Accuracy analysis for the approximate evolution problem

Suppose that "a# the solutions of the original and of the approximate problems exist and are
unique in the time interval DT and "b# the solution of the original problem is of holonomic type\
that is lła is either 09 or ×9 over all the interval DT[ Under these hypotheses it is possible to prove
that the exact and the approximate solutions relevant to the same interval DT coincide[

To this aim let us compare the new approximate problem DP\ eqns "2[5#Ð"2[05#\ with the original
one DPÞ\ eqns "1[0#Ð"1[00#\ under the above hypotheses "a# and "b#[ The following can be said]

0[ the two problems are di}erent only for the complementarity conditions\ eqns "1[00# and "2[05#^
1[ as a consequence of condition eqn "2[04#\ it follows that over all the same subinterval either

ÐT
9 S"t\ t#l¾a dt 0 9 or ×9^

2[ from the preceding point 1 and from the hypotheses "a# and "b# it follows that the solutions of
the original problem DPÞ and of the approximate problem DP coincide[ In fact the approximate
complementarity condition\ eqn "2[05#\ is satis_ed in the time interval DT by the solution of the
original problem DPÞ\ and so all of the remaining equations of the approximate problem DP are
satis_ed "coinciding with the corresponding equations of the original problem#[ Therefore\
owing to the assumed uniqueness of solution of both original and approximate problem\ the
solution of the original problem DPÞ is also the solution of the approximate problem DP in the
time interval DT[

It is possible to show that for every loading history continuous in time and in the presence of a
space discretization " for instance by the application of the Finite Element Method# the solution
of the original problem PÞ "over the whole time interval T# is amenable\ in an exact way\ to the
solution of a _nite sequence of holonomic problems DPÞ each of which are relevant to time
subintervals de_ned by a _nite number of distinct "a priori unknown# time instants
T9 ³ T�0 ³ T�1 ³ = = = ³ T�n ³ Tf "see De Donato and Maier\ 0861 and 0862#[

In the case of an a priori knowledge of the above time instants T�i "i � 0\ [ [ [ \ n# it becomes
obvious that the set of approximate solutions for each subinterval coincides with the exact solution
relevant to the whole time interval T[

Of course\ in the absence of an a priori knowledge of the above _nite distinct instants T�i
"i � 0\ [ [ [ \ n#\ the usual subdivision of the time interval T � ðT9\ TfŁ in a given number " for
instance equal# of subintervals\ can lead to the coincidence of the exact and approximate unknown
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functions "with all their derivatives# only when the number of subintervals tend to in_nity
uniformly[

Lastly\ it is worth noting that\ in the absence of a space discretization\ it becomes far more
complex to make an accuracy analysis for every given function S"t\ t# as de_ned in Subsection 2[0[
In this context\ studies of the authors are in progress on the existence of particular weight functions
S"t\ t# for which an a priori given degree of accuracy is assured[

2[3[ Contractivity property of the approximate evolution problem

The elasticÐplastic response "s¹ ij"t#\ o¹ij"t#\ u¹i"t#\ l¹a"t## of a solid to external actions "Fi\ pi\ [ [ [# is
{{contractive|| with respect to the Helmholtz free energy\ i[e[]

d
dt $

0
1 gV

"o¹e0

ij −o¹e1

ij #Dijhk"o¹e0

hk−o¹e1

hk# dV%¾ 9 "2[17#

where superscripts 0 and 1 denote two di}erent states due to the same history of external actions
originating\ at time t � 9\ from di}erent initial states of stresses "see e[g[ Simo and Govindjee\
0880#[ Property eqn "2[17# is valid also for the response of the new approximated time!step problem
DP "unbarred symbols#[ In fact\ at each time step\ using the principle of virtual work and taking
into account the semide_nite positiveness of Hab\ we have]

d
dt $

0
1 gV

"oe0

ij −oe1

ij #Dijhk"oe0

hk−oe1

hk# dV%� gV
"s0

ij−s1
ij#ð"o¾0

ij−o¾1
ij#−"o¾ p0

ij −o¾ p1

ij #Ł dV

� −gV
"s0

ij−s1
ij# 0sa l¾0

aNaij−s
a

l¾1
aNaij1 dV

¾ s
a gV

"l¾0
a ðfa"s1

ij#−fa"s0
ij#Ł¦l¾1

a ðfa"s1
ij#−fa"s0

ij#Ł# dV[ "2[18#

However\ owing to eqns "2[03#Ð"2[05#\ the approximate holonomic time!step problem DP must
satisfy\ for every point xi $ V and on the entire time interval DT\ one of the following three
conditions]

l¾a � 9 and fa ¾ 9 "2[29#

fa � 9 and l¾a − 9 "2[20#

fa � 9 and l¾a � 9 "2[21#

which imply]

l¾0
afa"s0

ij# � 9\ l¾1
afa"s1

ij# � 9 "2[22#

while the vice versa is obviously not true\ i[e[ eqns "2[22# do not imply eqns "2[03#Ð"2[05#[ Then\
by substitution of eqns "2[22# into inequality "2[18#]
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d
dt $

0
1 gV

"oe0

ij −oe1

ij #Dijhk"oe0

hk−oe1

hk# dV%¾ s
a gV

ðl¾0
afa"s1

ij#¦l¾1
afa"s0

ij#Ł dV ¾ 9 "2[23#

because l¾a − 9 and fa ¾ 9[ This proves the contractivity property of the approximate time!step
problem DP[

3[ Extremum principles for holonomic _nite!step initial:boundary value problem

Consider the following quadratic functional of the variables s¹�ij"xk\ t# and l¹�a"xk\ t#]

CÞðs¹�ij\ l¹�aŁ � −g
T

9 gV
s
a 0Naijs¹�ij−s

b

Habl¹�b¦f9
a1 lł�a dV dt

� −g
T

9 gV
s
a

f¹ �alł�a dV dt "3[0#

subject to the constraints]

s¹�ij\ j¦Fi � 9 in V×DT "3[1#

s¹�ijnj � pi on Gp×DT "3[2#

Cijhks¹�hk �
0
1

"u¹�i\ j¦u¹�j\i#−s
a

Naijl¹�a−uij in V×DT "3[3#

u¹�i � wi on Gu×DT "3[4#

f¹ �a � Naijs¹�ij−s
b

Habl¹�b¦f9
a ¾ 9 in V×DT "3[5#

lł�a − 9 in V×DT[ "3[6#

Statement 0] the _elds u¹�i "xk\ t#\ s¹�ij"xk\ t#\ l¹�a"xk\ t# of displacements\ stresses and plastic mul!
tipliers are the:a solution of the problem eqns "1[0#Ð"1[00# if and only if they minimize the functional
eqn "3[0# under the constraints eqns "3[1#Ð"3[6#\ provided the minimum is zero "otherwise the
problem has no solution#[
The sign constraints eqns "3[5# and "3[6# imply that]

CÞ − 9 "3[7#

and that]

CÞ � 9 if and only if f¹ �alł�a � 9[ "3[8#

This proves statement 0[ We note that statement 0 is a time!integrated form of the well known
statement of maximum plastic dissipation for the original problem DPÞ\ eqns "1[0#Ð"1[00# "see e[g[
Martin\ 0864#[

It is worth noting that the non!negativeness of the functional eqn "3[0# may be asserted anyway
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even in the case of lack of normality and:or non!positiveness of the hardening matrix Hab[ The
non!negativeness of CÞ derives\ in fact\ only from the sign restrictions on f¹ �a and l¹�a\ i[e[ eqns "3[5#
and "3[6#[

A di}erent form of the functional eqn "3[0#\ which is more useful for a comparison with previous
results\ can be obtained by transforming the _rst addend of the functional eqn "3[0#\ by virtue of
eqn "3[3# and taking into account the identity s¹�ijCijhksł�hk � 0

1
s¹�ijCijhksł�hk¦

0
1
o¹e
ij�Dijhkoł

e
hk�\ as follows]

−g
T

9 gV
s
a

Naijs¹�ijlł�a dV dt �
0
1 g

T

9 gV
s¹�ijCijhksł�hk dV dt¦

0
1 g

T

9 gV
o¹e
ij�Dijhkoł

e
hk� dV dt

−g
T

9 gV
s¹�ij

0
1

"uł�i\ j−uł�j\i# dV dt¦g
T

9 gV
s¹�iju¾ ij dV dt "3[09#

where o¹e�
ij � 0

1
"u¹�i\ j¦u¹�j\i#−SaNaijl¹�a−uij[ Using the principle of virtual work\ the third term of the

second member of eqn "3[09# becomes]

−g
T

9 gV
s¹�ij

0
1

"uł�i\ j¦uł�j\i# dV dt

� −g
T

9 gV
Fiuł�i dV dt−g

T

9 gGp

piuł�i dG dt−g
T

9 gGu

s¹�ijnjw¾ i dG dt[ "3[00#

Finally the functional eqn "3[0#\ using eqns "3[00# and "3[09#\ becomes]

CÞðu¹�i \ s¹�ij\ l¹�aŁ � g
T

9 6
0
1 gV

o¹e
ij�Dijhkoł

e
hk� dV¦

0
1 gV

s¹�ijCijhksł�hk dV¦s
a\b gV

l¹�aHablł�b dV

−gV
Fiuł�i dV−gGu

s¹�ijnjw¾ i dG−gGp

piuł�i dG−s
a gV

f9
a lł�a"t# dV¦gV

s¹�iju¾ ij dV7 dt[ "3[01#

In the case of in_nitesimal DT "incremental plasticity# and in the case of regular progression of
plastic strains "deformation theory#\ this functional splits into the sum of two other functionals
previously introduced by Capurso "0858#\ Capurso and Maier "0869# and Maier "0858b# "see
Appendix#[

However\ in general\ the functional eqn "3[01# cannot be split into the sum of two simpler
functionals[ This is essentially due to the lack of self!adjointness of the di}erential operator d"=#:dt
with respect to the usual scalar product\ that is]

g
T

9

ab¾ dt � g
T

9

a¾b dt[ "3[02#

Making use of the approximate complementarity condition eqn "2[0# it is possible to transform
the functional eqn "3[01# as follows]
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Cðu�i \ s�ij\ l�aŁ � g
T

9 g
T

9

S"t\ t# $
0
1 gV

oe
ij�"t#Dijhko¾

e
hk�"t# dV

¦
0
1 gV

s�ij"t#Cijhks¾�hk"t# dV¦s
a\b gV

l�a"t#Habl¾�b"t# dV

−gV
Fi"t#u¾�i "t# dV−gGu

s�ij"t#njw¾ i"t# dG

−gGp

pi"t#u¾�i "t# dG−s
a gV

f9
a l¾�a"t# dV¦gV

s�ij"t#u¾ ij"t# dV% dt dt "3[03#

under the conditions eqns "3[1#Ð"3[6# rewritten for the approximate variable _elds "i[e[ with
unbarred symbols#[ This remark leads to the following]

Statement 1] the _elds u�i "xk\ t#\ s�ij"xk\ t#\ l�a"xk\ t# of displacements\ stresses and plastic mul!
tipliers are the:a solution of the holonomic problem DP "eqns "2[5#Ð"2[05## if and only if they
minimize the functional eqn "3[03# under the constraints eqns "3[1#Ð"3[6# "rewritten for the unbar!
red symbols#\ provided the minimum is zero "otherwise the problem has no solution#[

In fact\ the functional eqn "3[03# transforms into]

C � −s
a g

T

9 gV
f�a"t# g

T

9

S"t\ t#l¾�a"t# dt dV dt "3[04#

subject to the conditions]

f�a ¾ 9 in V×DT\ l¾�a − 9 in V×DT[ "3[05#

We have\ obviously]

C − 9 "3[06#

and

C � 9 if and only if f�a"t# g
T

9

S"t\ t#l¾�a"t# dt � 9 in V×DT[ "3[07#

This proves statement 1[
Di}erently from functional eqn "3[01#\ the functional eqn "3[03# can be split into the sum of two

simpler functionals Ca and Cb "i[e[ C � Ca¦Cb#[
In fact\ let us consider the following functionals]

Ca ðu¼i\ l¼aŁ � g
T

9 g
T

9

S"t\ t# $
0
1 gV

o¼e
ij"t#Dijhko¼

=e
hk"t# dV¦

0
1

s
a\b gV

l¼a"t#Habl¼
=
b"t# dV

−gV
Fi"t#u¼

=
i"t# dV−gGp

pi"t#u¼
=
i"t# dG−s

a gV
f9

a l¼
=
a"t# dV% dt dt "3[08#

where]
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o¼e
ij �

0
1

"u¼i\ j¦u¼ j\i#−s
a

Naijl¼a−uij "3[19#

subject to the constraints]

u¼i � wi on Gu×DT "3[10#

l¼
=
a − 9 in V×DT "3[11#

and

Cb ðs?ij\ l?aŁ � g
T

9 g
T

9

S"t\ t# $
0
1 gV

s?ij"t#Cijhks¾ ?hk"t# dV¦
0
1

s
a\b gV

l?a"t#Habl¾?b"t# dV

−gGu

s?ij"t#njw¾ i"t# dG¦gV
s?ij"t#u¾ ij"t# dV% dt dt "3[12#

subject to]

s?ij\ j¦Fi � 9 in V×DT "3[13#

s?ijnj � pi on Gp×DT "3[14#

f?a � Naijs?ij−s
b

Habl?b¦f9
a ¾ 9 in V×DT[ "3[15#

It is possible to verify that C � Ca¦Cb and\ moreover\ the constraints relevant to functional C
are the union of the constraints relevant to functionals Ca and Cb[

Statement 2] the _elds u¼i"xk\ t#\ l¼a"xk\ t# of displacements and plastic multipliers which are a
solution of holonomic problem DP "eqns "2[5#Ð"2[05## "if a solution exists#\ make the functional
eqn "3[08# minimum under the constraints eqns "3[10#Ð"3[11#\ while the _elds s?ij"xk\ t#\ l?a"xk\ t# of
stresses and plastic multipliers\ which are a solution of the same holonomic problem\ make the
functional eqn "3[12# minimum under the constraints eqns "3[13#Ð"3[15#[
Proof[ In order to prove the _rst part of the statement\ it su.ces to show that the di}erence

DCa � Ca ðu¼i\ l¼aŁ−Ca ðui\ laŁ "3[16#

is always non!negative for any arbitrary u¼i\ l¼a\ satisfying conditions eqns "3[10#Ð"3[11#[ Assuming]

Dui � u¼i−ui "3[17#

Dla � l¼a−la "3[18#

and integrating by part with respect to the t variable\ the di}erence eqn "3[16# becomes

DCa �g
T

9 g
T

9

R"t\ t# $
0
1gV Doe

ij"t#Dijhk Doe
hk"t# dV¦

0
1
s
a\b gV Dla"t#Hab Dlb"t# dV

¦gV oe
ij"t#Dijhk Doe

hk"t# dV¦s
a\b gV la"t#Hab Dlb"t# dV

−gV Fi"t# Dui"t# dV−gGp

pi"t# Dui"t# dG−s
a gV f9

a Dla"t# dV%dtdt[ "3[29#
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Taking into account the eqns "1[4#\ "1[5#\ "1[7# and "3[19#\ the third integral of the r[h[s[ may be
transformed as follows]

gV
oe
ij"t#Dijhk Doe

hk"t# dV � gV
sij"t# $Doij"t#−s

a

Naij Dla"t#% dV "3[20#

and\ for the Gauss lemma\ it becomes]

gV
"sij"t# Dui"t##\j dV−gV

sij\ j"t# Dui"t# dV−gV
sij"t# s

a

Naij Dla"t# dV

� gGp

sij"t#nj Dui"t# dG−gV
sij\ j"t# Dui"t# dV−gV

sij"t# s
a

Naij Dla"t# dV[ "3[21#

Therefore\ noting that the equilibrium equations are satis_ed at the solution\ we obtain]

DCa � g
T

9 g
T

9

R"t\ t# $
0
1 gV

Doe
ij"t#Dijhk Doe

hk"t# dV¦
0
1

s
a\b gV

Dla"t#Hab Dlb"t# dV% dt dt

−g
T

9 g
T

9

R"t\ t# gV
s
a $Naijsij"t#−s

b

Hablb"t#¦f9
a%Dla"t# dV dt dt[ "3[22#

Owing to eqn "2[3#\ the _rst integral of DCa is always non!negative[ The second integral\ after
integration by part with respect to the variable t\ can be rewritten as follows]

−s
a g

T

9 gV
fa"t# g

T

9

S"t\ t#"l¼
=
a−l¾a# dt dV dt[ "3[23#

By using relation eqn "2[0#\ every term of the sum eqn "3[23# reduces to

−g
T

9 gV
fa"t#g

T

9

S"t\ t#l¼
=
a dt dV dt "3[24#

which\ because of eqns "2[03#\ "2[2# and "3[11#\ is always non!negative and equal to zero if and
only if

g
T

9

S"t\ t#l¼
=
a"t# dt � 9 where fa ³ 9[ "3[25#

This proves that

Ca ðu¼i\ l¼aŁ − Ca ðui\ laŁ "3[26#

for any _eld u¼i\ and l¼a satisfying the conditions eqns "3[10#Ð"3[11#\ the equality sign holding if
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u¼i � ui in V×DT "3[27#

l¼a � la in V×DT[ "3[28#

Similarly\ the proof of the second part of Statement 2 amounts to show that the di}erence

DCb � Cb ðs?ij\ l?aŁ−Cb ðsij\ laŁ "3[39#

is always non!negative for any arbitrary s?ij\ l?a satisfying conditions eqns "3[13#Ð"3[15#[ Assuming]

Dsij � s?ij−sij "3[30#

Dla � l?a−la "3[31#

the di}erence eqn "3[39# becomes

DCb � g
T

9 g
T

9

R"t\ t# $
0
1 gV

Dsij"t#Cijhk Dshk"t# dV

¦
0
1

s
a\b gV

Dla"t#Hab Dlb"t# dt

¦gV
sij"t#Cijhk Dshk"t# dV¦s

a\b gV
la"t#Hab Dlb"t# dV

−gGu

Dsij"t#njwi"t# dG¦gV
Dsij"t#uij"t# dV% dt dt[ "3[32#

Using Gauss lemma\ the di}erence DCb reduces to]

DCb � g
T

9 g
T

9

R"t\ t# $
0
1 gV

Dsij"t#Cijhk Dshk"t# dV¦
0
1

s
a\b gV

Dla"t#Hab Dlb"t# dV% dt dt

−g
T

9 g
T

9

R"t\ t# gV
s
a $Naij Dsij"t#−s

b

Hab Dlb"t#% la"t# dV dt dt[ "3[33#

Owing to eqn "2[3#\ the _rst integral of DCb is always non!negative[ The second integral\ after
integration by part with respect to the variable t\ can be rewritten as follows]

−s
a g

T

9 gV
"f?a"t#−fa"t## g

T

9

S"t\ t#l¾a"t# dt dV dt "3[34#

and\ by virtue of relation eqn "2[0#\ every term of the sum eqn "3[34# reduces to

−g
T

9 gV
f?a"t# g

T

9

S"t\ t#l¾a"t# dt dV dt "3[35#

which\ because of eqns "3[15#\ "2[04# and "2[2#\ is always non!negative and equal to zero if
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f?a"t# � 9 where g
T

9

S"t\ t#l¾a"t# dt × 9[ "3[36#

This proves that

Cb ðs?ij\ l?aŁ − Cb ðsij\ laŁ "3[37#

for any _eld s?ij and l?a satisfying the conditions eqns "3[13#Ð"3[15#\ the equality sign holding if

s?ij � sij in V×DT "3[38#

l?a � la in V×DT[ "3[49#

4[ Time discretization and links with some classical integration rules

For the sake of simplicity\ only the discretization of the functional Caðu¼i\ l¼aŁ of Statement 2 is
here considered[

In order to easily show the connection of the preceding results with some classical time integration
rules\ among the numerous discretization schemes for the numerical solution of variational prob!
lems\ the following usual space!time independent interpolations of the unknown _elds u¼i\ l¼a is
adopted]

u¼i � N	u"t#Ui"x# "4[0#

l¼a � N	l"t#La"x# "4[1#

where tilde means transposition[ Vectors Nu"t# and Nl"t# collect suitable interpolation time func!
tions\ while Ui"x# and La"x# represent vectors of unknown parameters[ By substitution of eqns
"4[0# and "4[1# into the functional eqn "3[08# we have]

Ca ðUi\ LaŁ �
0
1 gV

E	ijM
uDijhkEhk dV¦

0
1

s
a\b gV

L	aM
lLbNaijDijhkNbhk dV

−s
a gV

E	ijM
ulDijhkNahkLa dV¦

0
1

s
a\b gV

L	aM
lHabLb dV

−gV
U	 im

F
i dV−gGp

U	 im
p
i dG−s

a gV
f9

aL	am
l dV

−gV
E	ijm

uu
ij dV¦s

a gV
L	aNaijm

lu
ij dV "4[2#

where

Mu � g
T

9 g
T

9

R"t\ t#Nu"t#N	u"t# dt dt "4[3#
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Ml � g
T

9 g
T

9

R"t\ t#Nl"t#N	l"t# dt dt "4[4#

Mul � g
T

9 g
T

9

R"t\ t#Nu"t#N	l"t# dt dt "4[5#

mF
i � g

T

9 g
T

9

R"t\ t#Fi"t#Nu"t# dt dt "4[6#

mp
i � g

T

9 g
T

9

R"t\ t#pi"t#Nu"t# dt dt "4[7#

mlu
ij � g

T

9 g
T

9

R"t\ t#Dijhkuhk"t#Nl"t# dt dt "4[8#

muu
ij � g

T

9 g
T

9

R"t\ t#Dijhkuhk"t#Nu"t# dt dt "4[09#

ml
i � g

T

9 g
T

9

R"t\ t#Nl"t# dt dt "4[00#

and

Eij �
0
1
"Ui\ j¦Uj\i#[ "4[01#

It is easy to show that for a suitable choice of the weight function S"t\ t# and for an appropriate
time approximation of the unknowns\ some well known time integration schemes are recovered[
In particular if we assume that the unknowns are linear functions of time t "i[e[ Nu"t# � t:T\
Nl"t# � t:T\ Ui � Ui\ La � La\ where Ui and La are the values of the unknowns at the end of the
time step ð9\ T Ł#\ eqns "4[0# and "4[1# assume the following form]

u¼i"t# �
t
T

Ui "4[02#

l¼a"t# �
t
T

La[ "4[03#

Moreover\ assuming that the prescribed displacements wi"t# are a linear function of time in ð9\ T Ł
and that = limt:9"ui"t#:t# = ³ �\ the functional eqn "4[2# transforms into the following]

Ca ðUi\ LaŁ � g
T

9 g
T

9

R"t\ t# $0
0
1 gV

Ee
ijDijhkE

e
hk dV¦

0
1

s
a\b gV

LaHabLb dV1
×

tt

T1
¦0sa gV

fa"9#La dV−gV
Fi"t#Ui dV−gGp

pi"t#Ui dG1
t

T% dt dt "4[04#

where
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Ee
ij"t# �

0
1
"Ui\ j¦Uj\i#−s

a

NaijLa−uij"t#
T
t

"4[05#

subject to the constraints

Ui � wi"T# on Gu^ La − 9[ "4[06#

The optimality conditions for the discretized problem are "where a\ b � 0\ 1\ [ [ [ \ m#

g
T

9 g
T

9

R"t\ t# $Jij\ j"t#
tt

T1
¦Fi"t#

t

T% dt dt � 9 in V "4[07#

g
T

9 g
T

9

R"t\ t# $Jij"t#nj

tt

T1
−pi"t#

t

T% dt dt � 9 on Gp "4[08#

0
1

"Ui\ j¦Uj\i# � Ee
ij"t#¦s

a

NaijLa¦uij"t#
T
t

in V "4[19#

Ui � wi"T# on Gu "4[10#

Jij"t# � DijhkE
e
hk"t# "4[11#

Fa"t# � Naij 0s9
ij¦Jij"t#

t
T1−s

b

Hab0l9
b¦Lb

t
T1−ra "4[12#

g
T

9 g
T

9

R"t\ t#Fa"t#
t

T
dt dt ¾ 9 "4[13#

La − 9 "4[14#

La g
T

9 g
T

9

R"t\ t#Fa"t#
t

T
dt dt � 9[ "4[15#

For R"t\ t# � d"t−T#d"t−T# ðd"t# being the {{Dirac delta function||Ł\ the set of previous eqns
"4[07#Ð"4[15# becomes]

Jij\ j"T#¦Fi"T# � 9 in V "4[16#

Jij"T#nj−pi"T# � 9 on Gp "4[17#

0
1

"Ui\ j¦Uj\i# � Ee
ij"T#¦s

a

NaijLa¦uij"T# in V "4[18#

Ui � wi"T# on Gu "4[29#

Jij"T# � DijhkE
e
hk"T# "4[20#

Fa"T# � Naij"s9
ij¦Jij"T##−s

b

Hab"l9
b¦Lb#−ra "4[21#
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Fa"T# ¾ 9 "4[22#

La − 9 "4[23#

LaFa"T# � 9 "4[24#

which can be generated by the backward di}erence method\ while\ for R"t\ t# �
d"t−"T:1##d"t−"T:1##\ the set of eqns "4[07#Ð"4[15# becomes]

0
1

Jij\ j 0
T
11¦Fi 0

T
11� 9 in V "4[25#

0
1

Jij 0
T
11nj−pi 0

T
11� 9 on Gp "4[26#

0
1
"Ui\ j¦Uj\i# � Ee

ij 0
T
11¦s

a

NaijLa¦1uij 0
T
11 in V "4[27#

Ui � wi"T# on Gu "4[28#

Jij 0
T
11� DijhkE

e
hk 0

T
11 "4[39#

Fa 0
T
11� Naij 0s9

ij¦
0
1

Jij 0
T
111−s

b

Hab 0l9
b¦

0
1

Lb1−ra "4[30#

Fa 0
T
11¾ 9 "4[31#

La − 9 "4[32#

LaFa 0
T
11� 9[ "4[33#

If uij"t# is a linear function of time in ð9\ T Ł ði[e[ uij"t# �"t:T#uij"T#Ł\ the following holds]

Ee
ij 0

T
110 Ee

ij"T#\ Jij 0
T
110 Jij"T# "4[34#

and then the last set of equations\ substituting in it identities eqn "4[34#\ corresponds to the set
which can be generated by the trapezoidal rule[

5[ Illustrative example

A simple example of the use of the function Caðu¼i\ l¼aŁ\ eqn "3[08#\ is presented in order to evidence
the easiness of using multiple degrees of freedom time discretization schemes for each time step
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DT[ The well known Hodge|s six!bar truss problem of Fig[ 2 was considered "Hodge\ 0862#[ Two
solutions were found\ the _rst one\ using " for the unknown _eld ui and la# the linear shape function
f9"t# "see Fig[ 3# as indicated in eqns "4[02# and "4[03#^ the second one\ using the following quadratic
functions ðsee eqns "4[0# and "4[1#Ł]

Fig[ 2[ Hodge|s six!bar truss considered for the numerical application of the proposed approximate formulation ^ "a#
geometry and loading\ "b# mechanical properties of the vertical bars ^ Young|s modulus E and cross section area A are
assumed equal for all bars[
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Fig[ 3[ Linear and quadratic shape functions f9"t#\ f0"t#\ f1"t# adopted in the numerical example[

u¼i"t# � ð f0"t# f1"t#Ł $
Ui0

Ui1%� N	u"t#Ui"x# "5[0#

l¼a"t# � ð f0"t# f1"t#Ł $
La0

La1%� N	l"t#La"x# "5[1#

where the shape functions f0"t# and f1"t# are given in Fig[ 3\ being Ui0\ La0 and Ui1\ La1 the
displacements and the plastic multipliers at the mid point "0# and at the end "1# of the time step
interval\ respectively[ For both the linear and quadratic time interpolation schemes\ the same
weight function S2"t\ t# ðeqn "2[10#Ł was used and the problem was reduced to the minimization of
a quadratic function under a set of linear inequality constraints[

For each approximation scheme\ several solutions were found for di}erent numbers "7\ 01 and
05# of time discretization steps of the time interval ðt�\ TfŁ where t� is the time of the _rst appearance
of the yielding in a bar "see Fig[ 4#[ In Fig[ 4 a comparison is shown between the exact and the
approximate solutions\ while in Figs 5 and 6 percentage errors of displacements\ rotations and
stresses are evaluated as a function of loading history and for di}erent numbers of time steps[ Of
course\ when the exact solution vanishes\ the percentage error is no longer signi_cant[ For this
reason\ in Fig[ 6 the results relevant to bars 0\ 1\ 2 and 3 are omitted^ in fact\ in those cases the
exact stress plots change in sign one or more times[

As foreseeable\ better results are obtained by the analysis performed with a quadratic interp!
olation function[
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Fig[ 4[ Hodge|s exact solution "solid lines#\ in terms of displacements "a# and of stresses "b#\ compared to the approximate
solutions "dashed lines# obtained through linear and quadratic time!interpolation functions with a _xed number "05# of
time steps[ Both the linear and quadratic approximate solutions practically coincide with the exact stress response "b#\
while some di}erences occur in the displacements for high value of Q\ in the case of the linear time!approximation only
"a#[
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Fig[ 5[ Percentage error\ for increasing values of load Q and for di}erent numbers of time steps "7\ 01\ 05#\ of displacements u"Q#\ v"Q# ð"a#Ð" f#Ł and
rotations 8"Q#\ u"Q# ð"g#Ð"n#Ł of the two horizontal rigid bars of Fig[ 2 using linear and quadratic time interpolation functions ði[e[ the percentage
error of u"Q# is 099 "u"Q#−uexact"Q##:uexact"Q#Ł[
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Fig[ 6[ Percentage error\ for increasing values of load Q and for di}erent numbers of time steps "7\ 01\ 05#\ of stresses s

in bars 4 and 5\ using linear and quadratic time interpolation functions ði[e[ 099 "s"Q#−sexact"Q##:sexact"Q#Ł[
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It is worth noting that by using higher order interpolation functions it will be possible to capture
as accurately as desired any non!linear behaviour deriving from the nonlinearity of the hardening\
of the yield surface and of the elastic part of the constitutive law[ However\ capturing of the non!
linear behaviour due to the non!holonomic character of the constitutive law\ is related to the
amplitude of the time step considered when the unloading processes occur inside the time step\ so
the choice of the higher order interpolation functions has no e}ect[

Furthermore\ it is worth noting that\ in the time step where unloading occurs\ the percentage
error of the stress state associated to a vanishing value of the plastic multiplier l¾a "corresponding
to regions where l¾a 0 9# may become large independently of the order of the interpolation function
assumed\ as the real value of the yield function f¹ a may be largely negative\ while\ in the numerical
computation\ fa � 9[

Finally\ in Fig[ 7 some comparisons among the results of the proposed method with those of
classical techniques\ are shown[ Figures 7"a# and 7"b# show the numerical results in terms of vertical
displacement u and rotation 8\ respectively[ The results concerning the vertical displacement v
and the rotation u are omitted\ because all the approximate methods give results very close to the
exact solution[ Figure 7"c# shows the comparisons in terms of stress in bar 0[ The analogous plots
for the other bars are omitted because of the substantial agreement of all the approximate solutions
with the exact one[ It appears that the proposed method gives results in good accordance with
those of the trapezoidal rule\ but in any case with smaller oscillations[ This seems to be a
consequence of the choice of the weight function[ In fact\ the adopted weight function R2 ðsee Fig[
1" f#Ł takes larger values around t � t � T:1 and in some way simulates the behaviour of the
trapezoidal rule which "as shown in the previous section# has a {{Dirac delta function|| at
t � t � T:1 as weight function[

6[ Concluding remarks

For an elasticÐplastic material with piecewise!linearized yield surface\ linear hardening and
associated constitutive law\ in the context of small strains and displacements\ the following results
have been achieved]

"0# An extremal formulation was developed for the _nite single time step solution of the elasticÐ
plastic problem\ for each given loading process\ taking into account the fully non!holonomic
material behaviour "local!unloading included#[

"1# It has been shown that the above functional specializes to the sum of other functionals already
introduced by Capurso and by Maier\ if an in_nitesimal time step or a _nite time step with a
holonomic constitutive law are considered[

"2# Through a suitable change of the complementarity condition the elasticÐplastic problem has
been transformed into an approximate holonomic version[ The elasticÐplastic response of the
new holonomic problem is contractive with respect to the Helmholtz free energy[

"3# Two extremal formulations of the new holonomic problem have been established\ which
characterize the complete evolution of the body response in a prescribed time interval[

"4# Finally\ by the adoption of shape functions over the whole time interval it has been shown
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Fig[ 7[ Comparison between the exact solution of the problem of Fig[ 2 and the numerical solutions obtained by the
proposed method "using linear time approximation# and by other known methods " forward di}erence\ backward
di}erences and trapezoidal rule# ^ "a#\ "b# comparison in terms of displacements ^ "c#\ "d# comparison in terms of
rotations ^ "e#\ " f# comparison in terms of stresses[
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how well!known integration schemes for the solution of the original problem are equivalent
to the equations governing the new holonomic problem[

The following remarks are worth making]

"a# In contrast to classical formulations\ the present one allows for the discretization of the elasticÐ
plastic problem both in time and space\ particularly with Ritz!type discretization in time[

"b# The choice of the weight function S"t\ t# allows one to de_ne a priori the idealization adopted
for the real problem and then\ when the solution of the corresponding new holonomic
formulation is found\ it is possible to know the idealization of the real problem that the
solution corresponds to[ In general\ this correspondence is not known\ owing to the di.culty
of determining the consequences of the time discretization schemes adopted in order to _nd a
numerical solution[

"c# A major advantage of the possibility to choose the approximate schemes of the real behaviour
"using suitable weight functions S"t\ t## is that the choice can be made in such a way to have
an a priori guarantee of important solution properties such as existence\ uniqueness and
stability that are generally not so easy to establish[

"d# Finally\ it is expected that the proposed formulation may be extended to more general
constitutive laws\ as in the case of non!linear hardening and non!linearized yield surface[ This
topic\ together with the study of the in~uence of the choice of the weight function S"t\ t# on
the numerical results\ may be the object of further investigations[
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Appendix

Link with known incremental theorems

Consider an in_nitesimal increment of external actions dFi\ dpi\ dwi\ duij in a time step dt\ starting
at the initial time t9 from a known state F9

i \ p9
i \ w9

i \ u9
ij\ s9

ij\ o9
ij and l9

a [ The increasing quantities can
be written as]

u¹�i � u9
i ¦du¹�i

o¹�ij � o9
ij¦do¹�ij

s¹�ij � s9
ij¦ds¹�ij

l¹�a � l9
a¦dl¹�a

[

"A0#

Dropping an unessential constant\ the functional eqn "3[01# becomes]
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CÞðu¹�i \ s¹�ij\ l¹�aŁ � g
t9¦dt

t9
$
0
1 gV

"s9
ij¦ds¹�ij#Cijhksł�hk dV

¦
0
1 gV

"oe9
ij −do¹e�

ij #Dijhkoł
e�
hk dV¦s

a\b gV
"l9

a−dl¹�a#Hablł�b dV "A1#

−gV
"F9

i ¦dFi#uł�i dV−gGu

"s9
ij¦ds¹�ij#njw¾ i dG

−gGp

"p9
i −dpi#uł�i dG¦s

a gV
ralł�a dV¦gV

"s9
ij¦ds¹�ij#u¾ ij dV% dt[

In eqn "A1# all time integrals "in consideration of in_nitesimal time step# and some unessential
constants can be removed[ Then]

CÞðdu¹�i \ ds¹�ij\ dl¹�aŁ �
0
1 gV

ds¹�ijCijhk ds¹�hk dV¦
0
1 gV

do¹e
ij�Dijhk do¹e

hk� dV

¦s
a\b gV

dl¹�aHab dl¹�b dV−gV
dFi du¹�i dV−gGp

dpi du¹�i dG "A2#

−gGu

ds¹�ijnj dwi dG¦gV
ds¹�ij duij dV−s

a gV
f9

a dl¹�a dV

where we write]

f9
a � fa"9# � Naijs

9
ij−ra−s

b

Habl
9
b [ "A3#

Let Vp denote the region of V in which f9
a � 9 and Ve the remaining part of V[ Now we write

functional "A1# in the form]

CÞðdu¹�i \ ds¹�ij\ dl¹�aŁ � CÞ0 ðdu¹�i \ ds¹�ij\ dl¹�aŁ¦CÞ1 ðdl¹�aŁ "A4#

where\ taking into account that f9
a � 9 in Vp]

CÞ0 ðdu¹�i \ ds¹�ij\ dl¹�aŁ �
0
1 gV

ds¹�ijCijhk ds¹�hk dV¦
0
1 gV

do¹e�
ij Dijhk do¹e�

hk dV

¦s
a\b gVp

dl¹�aHab dl¹�b dV−gV
dFi du¹�i dV−gGp

dpi du¹�i dG "A5#

−gGu

ds¹�ijnj dwi dG¦gV
ds¹�ij duij dV

CÞ1 ðdl¹�aŁ � s
a\b gVe

dl¹�aHab dl¹�b dV−s
a gVe

f9
a dl¹�a dV[ "A6#

By substituting eqn "A0# into the linear constraints eqns "3[1#Ð"3[6# we obtain]



A[ Pandol_\ A[ Carini : International Journal of Solids and Structures 25 "0888# 074Ð107 104

ds¹�ij\ j¦dFi � 9 in V "A7#

ds¹�ijnj � dpi on Gp "A8#

do¹e�
ij �

0
1

"du¹�i\ j¦du¹�j\i#−s
a

Naij dl¹�a−duij in V "A09#

du¹�i � dwi on Gu "A00#

df¹ �a ¾ 9 in Vp "A01#

dl¹�a − 9 in Vp "A02#

f9
a¦df¹ �a ¾ 9 in Ve "A03#

dl¹�a − 9 in Ve[ "A04#

In the elastic zone Ve the constraint eqn "A03# is certainly satis_ed for every df¹ �a\ since it is
in_nitesimal with respect to f¹ �a^ then it can be omitted[ The problem]

min
du¹�i \ds¹�ij\dl¹�a

"CÞ � CÞðdu¹�i \ ds¹�ij\ dl¹�aŁ subject to "A7#Ð"A04## "A05#

can be regarded as]

min
du¹�i \ds¹�ij\dl¹�a

"CÞ0 � CÞ0 ðdu¹�i \ ds¹�ij\ dl¹�aŁ subject to "A7#Ð"A04##

¦min
dl¹�a

"CÞ1 � CÞ1 ðdl¹�aŁ subject to "A04##[ "A06#

In fact\ either the unknown functions of CÞ0 are not present in CÞ1 and vice versa\ or\ if they are
present in both the functionals\ they pertain to domains with a vanishing intersection[ The solution
of the minimum problem]

min
dl¹�a

"CÞ1 � CÞ1 ðdl¹�aŁ subject to "A04## "A07#

is obviously]

dl¹�a � 9 in Ve[ "A08#

Therefore\ the original minimum problem can be replaced by the following]

min
du¹�i \ds¹�ij\dl¹�a

"CÞ0 � CÞ0 ðdu¹�i \ ds¹�ij\ dl¹�aŁ subject to "A7#Ð"A02##[ "A19#

Functional eqn "A5#\ derived from eqn "3[01# for an in_nitesimal time!step\ subject to the con!
straints eqn "A7#Ð"A02#\ is equivalent to the sum of previous functionals introduced by Capurso
"0858# and Capurso and Maier "0869#[

Link with known holonomic\ _nite time!interval theorems

By integration by part\ using the principle of virtual work and the relation eqn "3[3#\ the
functional eqn "3[01# becomes]
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CÞðu¹�i \ o¹e�
ij \ s¹�ij\ l¹�aŁ �

0
1 gV

s¹�ij"T#Cijhks¹�hk"T# dV¦
0
1 gV

o¹e�
ij "T#Dijhko¹

e�
hk"T# dV

¦
0
1

s
a\b gV

l¹�a"T#Habl¹�b"T# dV¦s
a g

T

9 gV
sł�ijNaijl¹�a dV dt

−gV
Fi"T#u¹�i "T# dV−gGu

s¹�ij"T#njwi"T# dG−gGp

pi"T#u¹�i "T# dG

¦s
a gV

ral¹�a"T# dV¦gV
s¹�ij"T#uij"T# dV[ "A10#

Consider the particular case of regular progression of plastic strains "l¹�a monotonously increasing#\
i[e[ a loading history which never causes elastic unloading[ As a consequence\ l¹�a � 9 everywhere
until plastic deformations appear for the _rst time "at t ¾ t¹#^ whereas for any t × t¹ we have
f¹ �a � 9[ Therefore the following must hold]

sł�ijNaijl¹�a � 9 "A11#

since l¹�a � 9 for t ¾ t¹\ while f¹ �a � 9 for t × t¹ from which fł�a � 9\ i[e[]

sł�ijNaij � Hablł�b[ "A12#

As a consequence of eqns "A11# and "A12# the unknown functions u¹�i "xk\ t#\ s¹�ij"xk\ t#\ l¹�a"xk\ t#\
depend only on the _nal time T[ Then the functional eqn "A10# becomes]

CÞðu¹�i "T#\ o¹e�
ij "T#\ s¹�ij"T#\ l¹�a"T#Ł �

0
1 gV

s¹�ij"T#Cijhks¹�hk"T# dV

¦
0
1 gV

o¹e�
ij "T#Dijhko¹

e�
hk"T# dV

¦s
a\b gV

l¹�a"T#Habl¹�b"T# dV−gV
Fi"T#u¹�i "T# dV−gGu

s¹�ij"T#njwi"T# dG

−gGp

pi"T#u¹�i "T# dG¦s
a gV

ral¹�a"T# dV¦gV
s¹�ij"T#uij"T# dV[ "A13#

As a consequence of the increasing monotony of l¹�a and of "A11#\ "A12#\ being CÞ now only
dependent on T values\ the constraints eqns "3[1#Ð"3[6# become "the condition lł�a − 9 being changed
with l¹�a − 9#]

s¹�ij\ j"T#¦Fi"T# � 9 in V "A14#

s¹�ij"T#nj � pi"T# on Gp "A15#

o¹e�
ij "T# �

0
1

"u¹�i\ j"T#¦u¹�j\i"T##−s
a

Naijl¹�a"T#−uij"T# in V "A16#
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u¹�i "T# � wi"T# on Gu "A17#

f¹ �a"T# � Naijs¹�ij"T#−s
b

Habl¹�b"T#−ra ¾ 9 in V "A18#

l¹�a"T# − 9 in V[ "A29#

Functional eqn "A13#\ derived from eqn "3[01# on the assumption of a _nite holonomic time step
and subject to the constraints eqns "A14#Ð"A29#\ is equivalent to the sum of two other functionals
previously introduced by Maier "0858b#[
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